Sign up to receive email updates, action alerts, health tips, promotions to support our work and more from EWG. You can opt-out at any time. [Privacy]

 

Cosmetics chemicals of concern

Teen Girls' Body Burden of Hormone-Altering Cosmetics Chemicals: Cosmetics chemicals of concern

September 24, 2008

Teen participants were tested for chemicals from 4 chemical families commonly used in body care products.

Phthalates
Triclosan
Musks
Parabens
Table: Cosmetics chemicals can alter the hormone system

Phthalates

What are phthalates?

The widely-used group of chemicals called phthalates (pronounced THA-lates) can interfere with hormones in the body, posing potential risks to the reproductive and thyroid systems (Duty 2003, 2004, 2005; Swan 2005; Main 2006; Hauser 2007; Huang 2007; Meeker 2007). Preliminary studies also link phthalates to diabetes risk and asthma (Bornehag 2004; Stahlhut 2007; Jaakkola 2008; Kolarik 2008). Phthalates are detected in nearly every American, from babies to adults (CDC 2005). According to a large national survey conducted by the Centers for Disease Control and Prevention (CDC), levels of phthalates in some U.S. women of childbearing age exceed the government's safe levels (Kohn 2000). Phthalates are widespread contaminants in the environment and in wildlife as well (Kolpin 2002; Rudel 2003).

How are we exposed to them?

Though not always listed on labels, phthalates are common ingredients in cosmetics and body care products. Dibutyl phthalate may be found in nail polish. Phthalates are also used to moisturize and to help chemicals absorb into the skin. The most common use of phthalates is as an ingredient in "fragrance" mixtures added to body care products. Companies are not required to reveal the ingredients making up fragrance mixtures on the labels of products. EWG product testing found phthalates in nearly three-quarters of 72 name-brand products, though none of them listed phthalates as ingredients (EWG/HCWH/WVE 2002). Phthalates also soften plastic used in a wide range of ordinary products, from food wraps and toys to building materials and medical equipment. Currently, the chemical industry produces billions of pounds of these chemicals each year. People are exposed to phthalates daily through contact with everyday products and via food, indoor air, and even house dust (CDC 2005).

What are the potential health effects?

Studies of ordinary people suggest exposures to phthalates increase the risk of reproductive system birth defects and hormonal changes in baby boys (Swan 2005; Main 2006). In adult men they are linked to reduced sperm motility and concentration, increased damage to sperm DNA, and hormonal changes (Duty 2003, 2004, 2005; Hauser 2007). Phthalate exposures are linked to obesity and insulin resistance in men (Stahlhut 2007), conditions that can lead to Type 2 diabetes. They are also linked to thyroid irregularities in both men and women (Huang 2007; Meeker 2007), and to asthma and skin allergies in children (Bornehag 2004; Jaakkola 2008; Kolarik 2008). Animal studies indicate exposure to phthalates can trigger miscarriage or cause infertility in females, and can cause birth defects in male and female offspring of animals exposed during pregnancy (e.g., Marsman 1995; Wine 1997; Ema 1998; Mylchreest 1998, 1999, 2000; Gray 1999, 2000; CERHR 2000).

Have these chemicals been regulated?

Phthalates are considered hazardous waste and are regulated as pollutants in air and water. One phthalate, DEHP, is regulated in drinking water. DEHP was allegedly removed voluntarily from children's toys over a decade ago. However, 2 recent studies detected DEHP in toys on the market today (Purvis 2005; Kay 2006). Bans on specific phthalates in children’s products were passed recently, first in California, and then nationwide. Phthalates are unregulated in food, cosmetics, and medical products in the U.S. In contrast, the European Union restricts use of some phthalates.

How can we prevent future exposures?

Because phthalates are found in many everyday products, some exposure may be unavoidable. One way to reduce exposure is to switch to phthalate-free cosmetics and body care products. Choose products that do not list "fragrance" as an ingredient, and nail polish that does not contain dibutyl phthalate. You can also choose fragrance-free detergents and cleaning products, eat less food packaged in plastic, and not microwave food in plastic containers.

Return to top.

Triclosan

What is triclosan?

Triclosan is an artificial antimicrobial chemical used to kill bacteria on the skin and other surfaces. Triclosan is used in a variety of cosmetics and everyday products. Recent studies suggest this chemical may disrupt thyroid function (Veldhoen 2006), and can form toxic byproducts in tap water and in the environment (Adolfsson-Erici 2002; Lindstrom 2002; Lores 2005; Fiss 2007). A scientific advisory panel to the U.S. Food and Drug Administration (FDA) determined that "antibacterial" soaps, like those containing triclosan, were no better than regular soap and water at killing germs or reducing the spread of infection (FDA 2005). The American Medical Association recommends that triclosan and other "antibacterial" products not be used in the home, as they may encourage bacterial resistance to antibiotics (Tan 2002). Despite this advice, widespread use has led to detection of triclosan in the breast milk, blood, and urine of ordinary people (Adolfsson-Erici 2002; TNO 2005; Allmyr 2006a, 2006b; Dayan 2007; Calafat 2008). CDC’s national survey indicates that triclosan contaminates the bodies of 75% of the American population (Calafat 2008).

How are we exposed to triclosan?

Triclosan is the most common active ingredient in "antibacterial" liquid hand soaps, and is also found in toothpastes, deodorants, face and body washes, and acne treatments, among others. Besides cosmetics, triclosan is found in an increasing number of everyday items, such as dishwashing detergent, kitchen tools, toys, trash bags, bedding, bathmats, socks, and footwear (EWG 2008). Triclosan also contaminates household dust (Canosa 2007).

What are the potential health effects?

Triclosan accumulates in fat and can build up in the bodies of people and animals over time (Samsøe-Petersen 2003). An animal study indicates tadpoles exposed to tiny amounts of triclosan experience disruption of the thyroid system (Veldhoen 2006). Triclosan increased the effect of thyroid hormones when it was present in water at levels below 1 part per billion. Such low levels are commonly measured in people, and in rivers and streams, due to widespread use of triclosan (Kolpin 2002; Calafat 2008). The thyroid hormone system is similar in frogs and humans, suggesting that triclosan may disrupt the human thyroid system. Thyroid hormones are critical for normal growth and development of humans as well; the developing brain of a child is particularly vulnerable to damage caused by disruption of the thyroid system. Triclosan may also disrupt other critical hormone systems. A recent lab study found the chemical to exert both estrogenic and androgenic effects on human breast cancer cells (Gee 2008). Studies of fish suggest that triclosan may have weak androgenic (Foran 2000) or anti-estrogenic effects (Matsumura 2005), while a metabolite of triclosan may have estrogenic effects (Ishibashi 2004). Other animal studies link triclosan to inhalation and liver toxicity and cancer (EWG 2008). Triclosan can react with chlorine in tap water to form chloroform, a suspected cancer-causing chemical (Fiss 2007). It can also degrade into a type of dioxin (Lores 2005), part of a group of highly toxic chemicals, and a compound called methyl triclosan that is toxic to aquatic life (Adolfsson-Erici 2002; Lindstrom 2002; Farré 2008). Triclosan may also promote antibiotic resistance in bacteria, because while repeated use kills most bacteria, this can allow resistant strains to flourish (Levy 2001; Tan 2002; Aiello 2005).

Has the chemical been regulated?

Triclosan is regulated by FDA when used in cosmetics and for medical applications, by the U.S. Environmental Protection Agency (EPA) when used as an antibacterial pesticide (in products that make "antibacterial" claims), and by the Consumer Product Safety Commission (CPSC) when used in ordinary consumer products that do not make specific "antibacterial" claims. Current regulations do not take into account concerns regarding hormone disruption or formation of toxic byproducts, nor do they fully account for the potential for multiple exposures through the broad variety of triclosan-treated everyday products.

How can we prevent future exposures?

Because triclosan is found in many everyday products, some exposure may be unavoidable. One way to reduce exposure is to switch to triclosan-free cosmetics and body care products. Avoid body care products, especially liquid hand soaps, labeled "antibacterial," and always check the list of ingredients. Triclosan will be listed as an active ingredient on the product label. If you use a skin disinfectant, use an alcohol hand rub or rinse. Avoid "antibacterial" dishwashing detergents, cleaning products, and other items – there is no evidence that these products protect your health. Triclosan is approved for use in over 140 different types of products, and most of these are not required to have ingredient labels (EWG 2008). Vague claims such as "protection against mold," "odor-fighting" or "keeps food fresher, longer," may also indicate the presence of triclosan.

Return to top.

Musks

What are musks?

Nitro- and polycyclic musks are artificial chemicals used for decades in "fragrance" mixtures added to everyday products. Animal studies indicate musks may disrupt the hormone (endocrine) system (Seinen 1999; Schreurs 2004), and may disturb a natural defense the body uses to protect itself from toxic chemicals (Luckenbach 2005). Laboratory studies also link some musks to cancer (Maekawa 1990; Apostolidis 2002). Widespread use of musks has led to detections in fish and in rivers and lakes (Balk 1999; Fromme 1999, 2001; Gatermann 2002; Peck 2004, 2006; Duedahl-Olesen 2005; Kannan 2005). Musks can accumulate in fat and build up in the human body, and have been detected in people’s breast milk, fat, and blood (Rimkus 1996; Liebl 2000; TNO 2004, 2005; Hutter 2005; Lignell 2008).

How are we exposed to them?

Musks are often used in cosmetics and body care products, like perfume and soap, that contain "fragrance." Musks are also used in air fresheners, detergents, fabric softeners, cleaning products, cigarettes, and as food additives. Musks can be absorbed through the skin, inhaled, and ingested; skin absorption and inhalation are important routes of exposure through cosmetics. Daily use of body care products containing "fragrance" can result in repeated, direct exposures.

What are the potential health effects?

Some musks irritate the skin, or trigger allergic reactions (Cronin 1984; Parker 1986; Hayakawa 1987, 1991; Menz 1988; Thune 1988; DeLeo 1992; Kanchan 2002). In laboratory studies, certain musks have been linked to cancer (Maekawa 1990; Apostolidis 2002), and others no longer in common use harm the nervous system (Spencer 1984; Ford 1990; Rimkus 1996, 1997). Laboratory studies indicate that some musks can disrupt the hormone system (Seinen 1999; Chou 1999; Bitsch 2002; Gomez 2005; Schreurs 2004, 2005a, 2005b). A study of nitromusks in people suggests that higher levels of some musks may be linked to reproductive problems in women (Eisenhardt 2001). A recent animal study found that low levels of nitro- and polycyclic musks interfere with the ability of structures in cell walls to keep toxic substances from entering the cell (Luckenbach 2005). By disturbing a cell’s natural ability to fend off toxic chemicals, musks could allow poisons to build up within cells and cause damage. Human cells have the same cell wall structures as those examined in this study, indicating a cause for concern.

Have these chemicals been regulated?

Growing concerns about the health effects of nitromusks led the European Union to ban the use of some of these chemicals in cosmetics and body care products. Many companies have begun to use polycyclic musks in place of nitromusks because they are believed to be less toxic (Daughton 1999; OSPAR 2004). But some studies suggest that polycyclic musks pose some of the same health risks suspected of nitromusks. A nitromusk (musk ambrette) and a polycyclic musk have been removed from the market voluntarily due to health concerns. In the United States, all musk chemicals are unregulated, and safe levels of exposure have not yet been set.

How can we prevent future exposures?

Because musks are found in many everyday products, some exposure may be unavoidable. One way to reduce exposure is to switch to fragrance-free cosmetics and body care products – choose products that do not list "fragrance" as an ingredient. Musks are added to many other products, including laundry detergents, fabric softeners, and household cleaners – choose fragrance-free versions of these products as well. Unfortunately, as there is no requirement for companies to list ingredients on these products, it can be difficult to tell which contain fragrance. Finally, avoid air fresheners, which provide a blast of artificial fragrance to cover up other odors.

Return to top.

Parabens

What are parabens?

In use since the 1920s, parabens are a group of artificial preservatives commonly found in many different cosmetics and body care products. Parabens are used to prevent the growth of bacteria and mold in a cosmetic product, increasing its shelf life. Laboratory studies suggest parabens can disrupt reproductive hormones (Routledge 1998; Oishi 2001, 2002a, 2002b; Byford 2002; Darbre 2002, 2003; Inui 2003; Gomez 2005; Mikula 2006; Pugazhendhi 2007). In 2006, the Centers for Disease Control (CDC) tested urine samples from a group of 100 adults and found parabens in nearly all samples (Ye 2006). Cosmetics typically contain mixtures of parabens. Of the 6 we measured, 5 are fairly common in cosmetics: methyl-, ethyl-, propyl-, isopropyl-, and butylparaben (measured in combination with isobutylparaben); benzylparaben is less common.

How are we exposed to them?

Parabens are present in a wide variety of cosmetics and body care products, including moisturizers, face and skin cleansers, shampoos, conditioners, sunscreens, deodorants and antiperspirants, shaving gels, toothpastes, makeup, and many others. They are also used as preservatives in food and beverages, and in some medications. Daily use of body care products can result in repeated, direct exposure to parabens. Parabens have also been detected in household dust (Canosa 2007).

What are the potential health effects?

Some parabens can irritate the skin or cause allergic reactions (Schamberg 1967; Nagel 1977; Soni 2001, 2002; CIR 2006). Laboratory studies indicate that parabens are estrogenic, meaning they can mimic the hormone estrogen, disrupting normal function of the hormone system (Routledge 1998; Oishi 2001, 2002a, 2002b; Byford 2002; Darbre 2002, 2003; Inui 2003; Gomez 2005; Mikula 2006; Pugazhendhi 2007). In a recent study, traces of 5 different parabens were found in the breast cancer tumors of 19 of 20 women examined (Darbre 2004); other lab studies also link parabens to cancer (Byford 2002; Darbre 2002, 2003; Pugazhendhi 2007), and to reproductive health problems as well (Oishi 2001, 2002). When personal care products containing parabens are combined with chlorinated tap water, a number of chlorinated paraben byproducts can form (Canosa 2006). These chlorinated paraben chemicals have not been assessed for safety. Some are persistent, and have been detected in samples of untreated wastewater (Canosa 2006). Parabens are also linked to ecological harm; low levels of butylparaben can kill coral, according to laboratory tests (Danovaro 2008).

Have these chemicals been regulated?

The European Union banned use of sodium methylparaben in fragrance because it can strip skin of pigment (SCCPNFP 1999, 2000). While FDA limits the levels of parabens allowed in foods and beverages, it does not regulate these chemicals in cosmetics and body care products.

How can we prevent future exposures?

Because parabens are found in many everyday products, some exposure may be unavoidable. One way to reduce exposure is to switch to paraben-free cosmetics and body care products.

Return to top.

Cosmetics chemicals can alter the hormone system



A survey of some of the latest science on cosmetics chemicals shows these widely used ingredients can disrupt the normal function of the hormone system.

Hormone Disruption caused by cosmetic chemicals Role of hormone in the human body Typical concentrations of hormone in serum
Reproductive Hormones
Estradiol (estrogen) Phthalates: Cell studies show phthalates can replace estradiol on estrogen receptor sites (CERHR 2000). A study of female rats indicates one phthalate can reduce levels of estradiol in the body (CERHR 2000).
Triclosan: Cell studies show triclosan can replace estradiol on estrogen receptor sites, and can increase the growth of estrogen-sensitive breast cancer cells (Gee 2008). A frog study indicates triclosan may have anti-estrogenic effects (Matsumura 2005), while a fish study indicates a metabolite of triclosan may have estrogenic effects (Ishibashi 2004).
Musks: Cell studies show some musks produce weak estrogenic (Seinen 1999; Bitsch 2002; Gomez 2005) and anti-estrogenic effects (Schreurs 2005a, 2005b). Fish studies show certain musks produce anti-estrogenic effects (Schreurs 2004). Cell studies show metabolites of musks produce estrogenic effects (Chou 1999).
Parabens: Cell studies show certain parabens produce estrogenic effects (Routledge 1998; Gomez 2005). In particular, parabens can stimulate the growth of estrogen-sensitive breast cancer cells (Byford 2002; Darbre 2002, 2003; Pugazhendhi 2007), and have been detected in 19 of 20 human breast cancer tumors examined (Darbre 2004). Studies of lab animals also demonstrate estrogenic effects (Routledge 1998; Darbre 2002, 2003; Inui 2003; Mikula 2006).
In women, this potent form of estrogen maintains the reproductive system, guides development of feminine characteristics, and promotes health of many other non-reproductive body functions; in men, estrogens support maturation of germ cells. women of childbearing age: 20 to 400 ppt; post-menopausal women 5 to 25 ppt; men 10 to 60 ppt
Follicle-stimulating hormone Phthalates: Men highly exposed to certain phthalates are more likely to have altered body levels of follicle-stimulating hormone (Duty 2005). Stimulates development and maturation of a follicle in a woman’s ovaries; in men, involved in sperm formation, as well as enhanced production of androgen-binding protein by the Sertoli cells of the testes. women of childbearing age: 5 to 30 international units per liter (IU/L); post-menopausal women 50 to 100 IU/L; men 5 to 20 IU/L
Luteinizing hormone Phthalates: Baby boys consuming breast milk high in some phthalates tend to have altered body levels of both luteinizing hormone and ratios of luteinizing hormone to testosterone (Main 2006). Triggers ovulation in women; in men, stimulates production of testosterone from the Leydig cells in the testes. women: 1.2 to 4.6 ppm; men: 1.6 to 5.5 ppm
Testosterone Phthalates: Baby boys consuming breast milk high in certain phthalates tend to have altered body levels of both testosterone and ratios of luteinizing hormone to testosterone (Main 2006). Animal studies show phthalates can reduce testosterone levels in the body (Lottrup 2006).
Triclosan: Cell studies show triclosan can replace testosterone on androgen receptor sites, and can inhibit the growth of androgen-sensitive breast cancer cells treated with testosterone (Gee 2008). Fish studies show changes in fin length and non-significant trends in sex ratio suggesting that triclosan may be weakly androgenic (Foran 2000).
Musks: Male lab animals treated with certain parabens show reduced levels of testosterone and increased incidence of reproductive system problems (Oishi 2001, 2002a, 2002b).
In men, responsible for development of masculine characteristics; guides anabolic processes relating to muscle mass, bone density, growth, and strength; can be converted to estradiol. women: 0.1 to 0.8 ppb; men: 2.5 to 8 ppb
Androstenedione Musks: A study of women with gynecological and endocrine dysfunction indicates women with high levels of musk ketone are more likely to have altered levels of androstenedione in their bodies (Eisenhardt 2001). In women and men, converted metabolically to testosterone and other androgens, and to estrone. women of childbearing age: 0.6 to 3 ppb; post-menopausal women 0.3 to 8 ppb; men 0.9 to 1.7 ppb
Androstanediol-glucuronide Musks: A study of women with gynecological and endocrine dysfunction indicates women with high levels of some musks are more likely to have altered levels of androstanediol-glucuronide in their bodies (Eisenhardt 2001). In women and men, a primary regulator of secretion of luteinizing hormone and follicle-stimulating hormone. women: 0.56 to 3.4 ppb; men 2.7 to 7.6 ppb
Inhibin B Phthalates: Men highly exposed to certain phthalates may show altered body levels of inhibin B (Duty 2005). Inhibits production of follicle-stimulating hormone. women of childbearing age: 45 to 286 ppt; post-menopausal women: less than 7 ppt; men 60 to 300 ppt
Sex-hormone binding globulin Phthalates: Baby boys consuming breast milk high in certain phthalates typically have altered body levels of sex-hormone binding globulin (Main 2006). A glycoprotein that binds to sex hormones, specifically testosterone and estradiol, controlling their activity in the body. women: 1.6 to 7.0 ppt; men 0.57 to 4.2 ppt
Thyroid Hormones
T3 Phthalates: Men highly exposed to certain phthalates typically show altered levels of T3 in their bodies (Meeker 2007).
Triclosan: Exposure to low levels of triclosan increases the potency of T3, according to a study on tadpoles (Veldhoen 2006). The thyroid hormone system is similar in frogs and humans, suggesting that triclosan may disrupt the human thyroid system.
Potent form of thyroid hormone that regulates metabolism and sensitivity to specific adrenal hormones, and affects protein synthesis. 1.1 to 2.3 ppb
T4 Phthalates: Pregnant women highly exposed to certain phthalates typically have altered levels of T4 in their bodies (Huang 2007). Men highly exposed to certain phthalates tend to have altered levels of T4 in their bodies (Meeker 2007). Less active form of thyroid hormone that regulates metabolism and sensitivity to specific adrenal hormones, and affects protein synthesis. 40 to 110 ppb

 

Return to top.